

環境にやさしいタイヤとタイヤラベリング制度

ミュンヘン工科大学 経営学教授 ホルスト・ヴィルデマン

タイヤ性能の「マジックトライアングル」

安全性

ハンドリング

乗り心地

騒音

制動距離

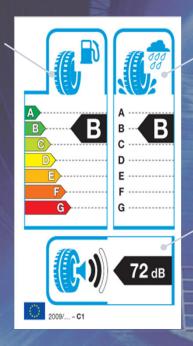
車のコンセプトとの適合



転がり抵抗

ハイドロプレーニング現象 冬季性能

タイヤ性能は安全性、耐久性、転がり抵抗によって決定


EU地域における法規制

EU規則(1222/2009)によるタイヤのラベリング制度

タイヤ性能の透明化

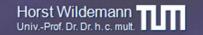
転がり抵抗

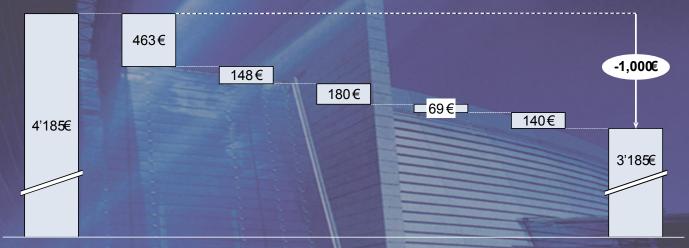
ウェットグリップ性能

騒音

エコロジー

経済効果


タイヤ騒音


安全性

タイヤ性能の明確な表示による、消費者に対する情報の透明化

正しいタイヤの選択が消費者にもたらす利益

効率を最適化 カテゴリーBの 0.5バールのタ 通常の運転ス 車線変更を少 積載荷物を 効率を最適化 していない場合 タイヤによる削 イヤの空気圧 タイルによる削 なくすることに 50kg未満にす した場合の燃 の燃料コスト 減の可能性 差による削減 減の可能性 よる削減の可 ることによる削 料コスト の可能性 能性 減の可能性

走行距離30,000kmあたりで最大1,000ユーロ(10万5千円※1)のコスト削減

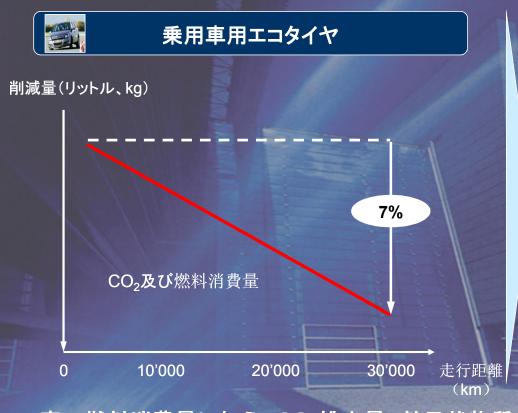
※1 2011年11月14日現在のレート(1ユーロ:約405円)

エコタイヤによるCO2削減の可能性

ゴム混合物の改善

新しい加硫促進剤

粒子状物質の排出:30 %削減


タイヤ形状の調整

トレッドパターンの調整

ゴム混合物の改善

タイヤ騒音:20%低減

粒子状物質の排出量削減とタイヤ騒音の低減に高い効果

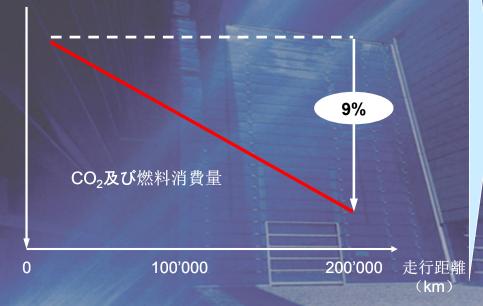
経済効果とエコロジー効果

- 1,000ユーロ(10万5千円*1)のコスト削減
- → 700kg のCO₂排出量 削減
- ➡ 粒子状物質排出量を30% 削減
- ▶ タイヤ騒音を20% 低減

乗用車で年間走行距離 30,000 kmに対する効果

車の燃料消費量に加え、CO₂排出量、粒子状物質、タイヤ騒音量を低減

※1 2011年11月14日現在のレート(1ユーロ:約105円)


コスト削減の可能性

トラック用エコタイヤ

削減量(リットル、kg)

経済効果とエコロジー効果

- ➡ 22,000ユーロ(231万円*1)のコスト削減
- → 44 t のCO2排出量 削減
- ➡ 粒子状物質排出量を30% 削減
- ▶ タイヤ騒音を20% 低減

40tの大型トレーラーで 年間走行距離20万km に対する効果

エコタイヤによって、40t大型トレーラーで22,000ユーロ(231万円^{※1})の削減

※1 2011年11月14日現在のレート(1ユーロ:約105円)